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ABSTRACT  
Reliability and operational availability of unmanned vehicles can be augmented through a dynamic reshaping 
of their operational and mission profile in response to the evolution of their health state and contingencies. In 
hazardous settings, the dynamic reconfiguration of a mission profile requires real-time predictions of residual 
capabilities which determine the set of feasible manoeuvres to preserve the vehicle and complete the mission 
successfully. This work discusses two computational frameworks to predict system capabilities from on-board 
sensor measurements and actualize a form of self-awareness for unmanned air vehicles in support of 
reconfigurable mission planning. The first framework relies on a traditional approach to diagnostics and 
prognostics: model reduction and supervised learning are combined to accelerate both the identification of 
damage parameters and the prediction of system capabilities. The second framework introduces a priority 
shift that emphasizes the prediction of vehicle capabilities over the characterization of the damage: an original 
bypass scheme (named MultiStep-ROM) combines projection-based model reduction and unsupervised 
machine learning into a form of transfer learning that computes adaptive models directly mapping 
measurements into capabilities. The two approaches are presented through the example cases of unmanned 
air vehicles that undergo failures of on-board actuation devices and structural damages. The computational 
experiments indicate that the bypass approach allows to obtain sensitively faster predictions of vehicle 
capabilities and is better suited to meet real-time responsiveness requirements than the traditional scheme.  

1. INTRODUCTION 

Unmanned vehicles (UxVs) are autonomous systems whose adoption is sensitively growing across 
multidomain settings spanning air, ground and sea environments. UxVs are becoming key players in civilian 
and military operational scenarios, which both demand for advanced reliability and readiness of the 
interoperating systems. Reliability and operational availability of unmanned vehicles can be augmented 
through the possibility for those systems to dynamically reshape their operational and mission profile in 
response to the evolution of their health state and contingencies. As an example, we can consider the specific 
case of unmanned aerial vehicles (UAVs) that are tasked to complete a mission in hazardous settings. The 
source of hazard might be hard to characterize a priori, but the impact onto the mission could result in a 
catastrophic failure. The structural integrity or the nominal functioning of the systems could be dramatically 
jeopardized, eventually leading to the loss of the vehicle. The possibility to reconfigure the mission would 
allow the UAVs to continue operating safely under degraded and damaged conditions, without over-replacing 
parts, oversizing components, and multiplying systems redundancies. 

To enable dynamic mission replanning, unmanned aerial vehicles can be equipped with advanced artificial 
reasoning that learns about the actual health of the systems from sensor measurements, and predicts in real-
time the evolving/residual capabilities that constrain the decision space (feasible manoeuvres) of possible 
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actions (mission profile) (Allaire et al. 2014; Mainini and Willcox 2015; Lecerf et al. 2015; Burrows and 
Alllaire, 2019). This Sense-Plan-Act (SPA) flow relies on a form of artificial awareness about what a system 
can still do under degraded conditions, as opposed to exactly knowing about the specific injury that a system 
is experiencing. The identification of the fault requires the systems to self-diagnose and characterize the 
damage conditions, possibly in real-time. Therefore, condition assessment tasks relate to diagnostics and 
prognostics problems, and rely on the detection and identification of damage type and extent —sometimes 
even fault modes and root-causes— which would then inform the prediction of system reliability and the 
decisions about maintenance interventions and planning. 

Both dynamic mission reconfiguration and vehicle condition assessment are Sense-Plan-Act flows demanding 
for advanced forms of system/vehicle self-awareness: the former prioritizes the prediction of systems 
capabilities (what the vehicle can do), the latter emphasizes the identification of the damage parameters (what 
is affecting the vehicle). These shades of priorities become critical when seeking avenues to accelerate the 
computational flow from measurements to predictions to run onboard UAVs, since asking the measured data 
for the right questions is of key importance to actualize reasoning efficiency and cope with the limited 
computing resources (Mainini, 2017). This reasoning would enable a form of proactive maintenance which 
relies on the ability of the autonomous vehicle to promptly counteract to contingencies: by dynamically 
adapting the operational behaviour, the UAV would not only survive a particular event, but also complete the 
mission successfully. 

This work discusses this priority shift, which might be sensitively beneficial to the efficient actualization of 
dynamic reconfigurable mission planning for improved UAV readiness and reliability. The change of 
perspective is illustrated through two approaches that differently combine model reduction and learning 
schemes to speed up the SPA computational flow. The first framework is developed to accelerate diagnostics 
and prognostics, which are the traditional phases that enable vehicle readiness and reliability through 
condition-based maintenance planning. The second framework prioritizes the prediction of vehicle capabilities 
over the characterization of the damage, which is better suited to augment vehicle readiness and reliability 
through reconfigurable mission planning. Our approaches are presented through the example cases of 
unmanned air vehicles that undergo failures of on-board actuation devices and structural damages.  

The remaining of the paper is organized as follows: Section 2 discusses the two approaches. In particular, 
Section 2.1 presents the SPA paradigm adopted to cast the information flow that characterizes the artificial 
reasoning for reconfigurable mission planning; Section 2.2 proposes an overview of the two approaches we 
developed for real-time capability prediction to enable condition-based maintenance planning (Section 2.2.1) 
and reconfigurable mission planning (Section 2.2.2), respectively. Finally, Section 3 summarizes the 
concluding remarks. 

2. APPROACH AND DISCUSSION 

2.1 From the Sense-Plan-Act to the Sense-Infer-Plan-Act information flow 
Reconfigurable mission planning is a decision problem that can be casted according to the Sense-Plan-Act 
paradigm broadly adopted in robotics (Allaire et al. 2014). The SPA paradigm models the information flow 
that artificial systems follow to autonomously complete a task by computing the most appropriate sequence of 
actions and procedures from sensed data. We focus on the Sense-to-Plan portion of the SPA flow: in particular, 
we seek computational strategies to extract highly informative content from sensed data and synthetize it into 
useful reliable knowledge about the health of the autonomous aerial system/vehicle. This knowledge can then 
be leveraged to enable the responsive amendment of system behaviour, and the update of the manoeuvre 
sequence to (i) preserve the vehicle and (ii) complete the mission successfully. 
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The Sense step is inevitably associated with measured data and acquired signals (measurements) which are 
physical quantities that depend on the state of the vehicle and can be measured directly during the operational 
activity. For the case of unmanned air vehicles, those might include the acquisition of structural deformation 
measures (Mainini and Willcox 2015, Lecerf et al. 2015), envelope current signals (Berri et al. 2018, 2019) or 
counter-electromotive force of on-board electric motors, aerodynamic load peaks or distributions. On the other 
hand, the space of possible planning decisions is constrained by the residual capabilities of the vehicle 
undergoing degradations. Those capabilities are also physical quantities that evolve with the health condition 
of the vehicle, but —differently from the measurements— cannot be directly measured. Examples of capability 
quantities for UAVs include structural failure indices (Mainini and Willcox 2015, 2017), and measures of 
system reliability such as the allowable load factors (Lecerf et al. 2015, Singh and Willcox 2017) and the 
remaining useful life (Berri et al. 2018, 2019). 

Within this context, it is possible to notice that the Sense-to-Plan flow intrinsically consists of two 
computational tasks (Figure 1): an identification step to infer the details of the health condition (damage 
parameters) from measurements; and a prediction step to estimate the actual capabilities of the system and 
their evolution, which in turn inform the decisions about operations (mission and maintenance) replanning. 
Hence, it is possible to expand the Sense-Plan-Act flow into the Sense-Infer-Plan-Act flow, which 
acknowledges the intermediate step of inference about the parameters that describe the actual damage/fault 
condition (Mainini and Willcox, 2015). The identification step is an inverse problem whose solution might 
require interrogating costly models many times. The prediction step implies to solution of forward problems 
through the evaluation of physics-based models of systems and structural behaviour. Both the computational 
steps of identification and prediction are frequently too expensive and unsuited to meet the responsiveness 
requirements imposed by real-time operations. 

 

Figure 1: The Sense-Infer-Plan-Act flow which expands the Sense-Plan-Act paradigm to 
acknowledge the intermediate step of damage inference; the inferred damage parameters are 

then used to predict the residual capabilities of the unmanned vehicle/system. 
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Our work aims to accelerate the Sense-to-Plan information flow (data processing and knowledge synthesis) 
from sensed data (measurements and signal acquisitions) to predict evolving systems’ capabilities. These 
predictions are of critical importance to assist the dynamic reconfiguration of the mission profile in real-time, 
which in turn will enable the vehicle to proactively preserve its integrity and respond to the contingencies.  

2.2 Real time predictions of vehicle capabilities from measurements 
We discuss the computational frameworks to realize the Sense-to-Plan information flow for the real-time 
prediction of system/vehicle capabilities to enable either condition-based maintenance planning or 
reconfigurable mission planning. The two approaches are described through the example cases of the 
prediction of the remaining useful life of electro-mechanical actuators (EMAs) and the prediction of failure 
indices of composite panels. The former is a multidomain application that considers multiple fault modes 
affecting mechanical (gearbox), electrical (motor) and electronics (control) elements of the EMA device for 
the secondary flight controls of an unmanned air vehicle (Figure 2). The latter is a single domain application 
that considers structural damages affecting composite wing panels of an unmanned air vehicle (Figure 3).  

 

Figure 2: Architecture of the electro-mechanical actuator for a UAV secondary flight controls 
(Berri et al., 2019). 

 

Figure 3: UAV wing panel layout and layer sequence (plain-weave carbon-fiber plies); damage 
parameters (location and size) and compressive loading (Mainini and Willcox, 2015). 

Both the approaches are based on an offline-online structure: offline we combine model reduction techniques 
and learning schemes to obtain cheap-to-evaluate representations of system behaviours that synthesize and 
embed the specific knowledge required for our prediction tasks; online those representations are used to obtain 
fast predictions of vehicle capabilities from measured data and actualize the Sense-to-Plan flow.   
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2.2.1 Diagnostics and prognostics to enable condition-based maintenance planning. 

Figure 4 illustrates the framework developed for the nearly real-time assessment of the health condition and 
reliability of an autonomous system to support a responsive re-planning of maintenance and operations. In 
particular, we observe the strategy developed for the prediction of the remaining useful life  𝒔𝒔(𝒙𝒙) = 𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙) ∈
ℝ𝑛𝑛𝑠𝑠 of the onboard EMA system (capability) from acquisitions of the stator envelope current 𝒒𝒒(𝒙𝒙) ∈ ℝ𝑛𝑛𝑞𝑞 
(measurements). Both measurements and capabilities are sensitive to the multi-physics fault parameters 𝒙𝒙 ∈
ℝ𝑛𝑛𝑥𝑥, affecting the mechanical transmission (friction and backlash), the electrical motor (partial short circuit 
and static eccentricity), and the control electronics (drift of the position control loop gain). The condition 
assessment problem consists of diagnostics and prognostics steps, that is the full completion of both the 
identification of damage parameters from sensor acquisition and the prediction of capabilities from the damage 
parameters. 

 

Figure 4: Computational framework for diagnostics and prognostics to enable responsive re-
planning of maintenance and operations: the inference step is fully addressed. The left-hand 
side (blue) illustrates the offline flow, the right-hand side (red) indicates the online flow: the 

models computed offline and used online are at the intersection.  

Offline, full order physics-based models are used to obtain reference datasets collecting high dimensional 
acquisitions (𝑛𝑛𝑞𝑞~106) of the envelope current signals 𝒒𝒒(𝒙𝒙), damage propagation rates �̇�𝒙(𝒙𝒙, 𝑡𝑡) and associated 
failure (assessment) labels 𝜻𝜻(𝒙𝒙, 𝑡𝑡) for a variety of combinations of fault conditions 𝒙𝒙. The reference datasets 
are used to learn reduced representations of 𝒒𝒒(𝒙𝒙) through Proper Orthogonal Decomposition (POD), which 
allows to approximate the high-dimensional acquisition of the envelope current signal as a liner combination 
of dominant modes (POD basis vectors 𝚽𝚽 = {𝜑𝜑𝑖𝑖}𝑖𝑖=1

𝑛𝑛𝜑𝜑 , with 𝑛𝑛𝜑𝜑~101). The POD coefficients 𝜶𝜶(𝒙𝒙) express the 
relationship between the fault parameters 𝒙𝒙 and the envelope current in the 𝑛𝑛𝜑𝜑-dimensional reduced space of 
the POD, rather than in the 𝑛𝑛𝑞𝑞-dimensional space of the acquired signal, with major computational savings 
since 𝑛𝑛𝜑𝜑 ≪ 𝑛𝑛𝑞𝑞. Then, we use supervised learning, specifically a Multi-Layer Perceptron, to compute a model 
of the fault conditions 𝒙𝒙 as a function of the POD coefficients 𝜶𝜶: having reduced the dimensionality of the 
problem via POD, we wish the MLP to better capture the information content of the limited set of available 
training data 𝒒𝒒(𝒙𝒙). Eventually we seek a model to approximate the expensive-to-evaluate assessment function 
𝜻𝜻(𝒙𝒙, 𝑡𝑡) that provides the healthy/faulty response by integrating the damage propagation model over time.  We 
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chose a Support Vector Machine (SVM) to learn a binary classifier that associates either a healthy or faulty 
label to a given 𝒙𝒙.  

Online, the acquisitions of the electric current signals 𝒒𝒒� are compressed and processed to compute the 
associated POD coefficients via gappy POD 𝜶𝜶�(𝒒𝒒�,𝚽𝚽). Given the reconstructed coefficients 𝜶𝜶�, the identification 
step in completed with the estimate of the fault combination 𝒙𝒙�(𝜶𝜶�) through the MLP model. Then, the fault 
propagation is simulated, and the associated health states are evaluated through the SVM until the faulty 
response is achieved: the estimate of the 𝒔𝒔�(𝑥𝑥) = �̃�𝑡𝑅𝑅𝑅𝑅𝑅𝑅(𝒙𝒙�,𝜶𝜶�) completes the prediction step.  This kind of 
application targets the identification of the particular combination of faults 𝒙𝒙 affecting the onboard 
electromechanical actuation device of the secondary flight controls, and enable condition-based maintenance 
planning. Therefore, the goal is to actualize system self-awareness for the characterization of the specific 
damage that is causing a degradation of the overall vehicle capabilities. In this case, both the identification and 
the prediction steps have the same priority within the Sense-to-Plan flow, and the inference step cannot be 
skipped or bypassed. This type of frameworks is more traditional and allows to obtain predictions of the 
remaining useful life of the multi-physics EMA device in about 0.2− 0.3𝑠𝑠 on a common laptop, as opposed 
to the hours that are required to solve the full order identification and prediction steps. More details about case-
specific implementations and computational setups are discussed by Berri et al. (2018, 2019)  

2.2.1 Bypassing damage inference to enable reconfigurable mission planning. 

Figure 5 illustrates the computational framework we proposed for the real-time prediction of systems and 
vehicle (residual) capabilities to support the dynamic autonomous reconfiguration of the mission profile. We 
present the framework through the specific example of predicting the structural failure index 𝒔𝒔(𝒙𝒙) ∈ ℝ𝑛𝑛𝑠𝑠 of a 
composite wing panels (capability) from acquired values 𝒒𝒒(𝒙𝒙) ∈ ℝ𝑛𝑛𝑞𝑞 of strain components (measurements). 
Both measurements and capabilities are sensitive to the presence, location and extent of the damage 𝒙𝒙 ∈ ℝ𝑛𝑛𝑥𝑥 
that degrades the structural properties of the panel. The replanning of the mission profile prioritizes the 
prediction of capabilities from sensor acquisition, while the full identification of the damage parameters is not 
essential. Therefore, we aim to compute an efficient and informative mapping from measurements to 
capabilities that exploits the opportunity to bypass the inference step. 

 
Figure 5: Computational framework for vehicle capability predictions from measured data to 

enable real-time mission reconfiguration as a form of proactive maintenance: the inference step 
is bypassed. The left-hand side (blue) illustrates the offline flow, the right-hand side (red) 

indicates the online flow: the models computed offline and used online are at the intersection. 
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Offline, full order physics-based models are used to obtain reference datasets of high dimensional snapshots 
(𝑛𝑛𝑞𝑞~104,𝑛𝑛𝑠𝑠~104) of the strain field 𝒒𝒒(𝒙𝒙) and failure index field 𝒔𝒔(𝒙𝒙) for a variety of combinations of damage 
conditions 𝒙𝒙 by solving the forward problems through finite elements-based simulation. First, the reference 
datasets are used to learn reduced representations of the strain components and of the failure index in the form 
of POD expansions. The POD computes the set of basis vectors —𝚽𝚽 = {𝜑𝜑𝑖𝑖}𝑖𝑖=1

𝑛𝑛𝜑𝜑  for the measurements and  
𝚿𝚿 = {𝜓𝜓𝑖𝑖}𝑖𝑖=1

𝑛𝑛𝜓𝜓   for the capabilities— that constitutes physics-based parameterization of the fields 𝒒𝒒(𝒙𝒙) and 
𝒔𝒔(𝒙𝒙), respectively (Swischuk et al., 2019). The POD coefficients 𝜶𝜶(𝒙𝒙) and 𝜷𝜷(𝒙𝒙) express the relationship 
between the damage 𝒙𝒙 and measurements and capabilities in the reduced space of the respective PODs, with 
major computational savings since 𝑛𝑛𝜑𝜑 ≪ 𝑛𝑛𝑞𝑞 and 𝑛𝑛𝜓𝜓 ≪ 𝑛𝑛𝑠𝑠. Second, we seek an adaptive mapping from the 
reduced space of measurements 𝜶𝜶 to the reduced space of capabilities 𝜷𝜷 through localization: we use 
unsupervised competitive learning (specifically Self Organizing Maps, SOMs) to identify 𝑛𝑛𝑤𝑤~101 latent 
features {𝒘𝒘𝑘𝑘}𝑘𝑘=1

𝑛𝑛𝑤𝑤   common to the two reduced spaces; then we compute 𝑛𝑛𝑤𝑤 sets of local models 𝜷𝜷𝑘𝑘(𝜶𝜶𝑘𝑘) =
�𝛽𝛽𝑖𝑖𝑘𝑘(𝜶𝜶𝑘𝑘)�𝑖𝑖=1

𝑛𝑛𝜓𝜓  to characterize the subspace represented by each dominant feature 𝒘𝒘𝑘𝑘.   

Online, we compute reduced representations of measurements 𝜶𝜶� from compressed or sparse sensors 
acquisitions 𝒒𝒒� via gappy POD. The reconstructed coefficients 𝜶𝜶� permit to associate the measured state with 
the most representative dominant feature 𝒘𝒘∗, which elicits only the corresponding set of local models 𝜷𝜷∗(𝜶𝜶�). 
De facto, the different sets of local models are dynamically activated to transfer/convey the information from 
the measurements space to the capability space through the common features exposed by the SOM. The POD 
expansion of the capabilities 𝒔𝒔�(𝜷𝜷∗(𝜶𝜶�)) completes the efficient prediction of what the system/vehicle can do, 
bypassing damage identification and characterization. This computational framework has been named 
multistep reduced order modelling (MultiStep-ROM) for the multiple projection steps introduced with the 
PODs and the SOMs (Mainini and Willcox, 2017); more recently, the formulation has been referred to as the 
bypass approach (Burrows and Allaire, 2019).  This type of frameworks introduces a priority shift: from the 
characterization of the damage to the prediction of the capabilities. For our application, it allows to obtain 
predictions of the failure index of the wing panel in about 0.001𝑠𝑠 on a common laptop, as opposed to the hours 
required to solve the full order identification and prediction steps. More details about case-specific 
implementations and computational setups are discussed by Mainini and Willcox (2015, 2017) 

3. CONCLUDING REMARKS 

This document discusses the need for efficient artificial reasoning to support dynamic reconfigurable mission 
planning for the improvement of UAV readiness and reliability. Two frameworks are presented to actualize 
the form of system and vehicle self-awareness needed to support the planning task. The first framework relies 
on a more traditional approach: model reduction and supervised learning techniques are combined to both 
identify damage parameters and predict system capabilities. The second framework implements an original 
approach that combines projection-based model reduction and unsupervised machine learning into the 
MultiStep ROM bypass scheme, a form of domain aware transfer learning that computes adaptive models to 
map directly from measurements to capabilities.  

Both the computational approaches target the sensitive acceleration of the Sense-to-Plan information flow by 
combining physics-based model reduction and data-driven learning schemes. However, a major speed up can 
be obtained through a priority shift that emphasizes the prediction of vehicle capabilities over the identification 
of damage/fault parameters. Indeed the first framework permits a reduction in computational time of about 3 
orders of magnitude with respect to predictions based on full-order model evaluations, while the second 
framework allows savings of the order of 106 and more. Therefore, the bypass approach permits faster 
predictions which are better suited to the responsiveness requirements of dynamic reconfigurable mission 
planning tasks.  
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